SPS Feed

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

The Latest News, Articles, and Events in Signal Processing

IEEE Transactions on Computational Imaging

Dictionary learning for sparse representations is generally conducted in two alternating steps-sparse coding and dictionary updating. In this paper, a new approach to solve the sparse coding step is proposed. Because this step involves an 0 -norm, most, if not all, existing solutions only provide a local or approximate solution. Instead, a real 0 optimization is considered for the sparse coding problem providing a global solution. 

IEEE Transactions on Computational Imaging

Coded illumination can enable quantitative phase microscopy of transparent samples with minimal hardware requirements. Intensity images are captured with different source patterns, then a nonlinear phase retrieval optimization reconstructs the image. The nonlinear nature of the processing makes optimizing the illumination pattern designs complicated. 

IEEE Transactions on Audio, Speech and Language Processing

Short duration text-independent speaker verification remains a hot research topic in recent years, and deep neural network based embeddings have shown impressive results in such conditions. Good speaker embeddings require the property of both small intra-class variation and large inter-class difference, which is critical for the ability of discrimination and generalization.

IEEE Transactions on Audio, Speech and Language Processing

Automatic speech emotion recognition has been a research hotspot in the field of human-computer interaction over the past decade. However, due to the lack of research on the inherent temporal relationship of the speech waveform, the current recognition accuracy needs improvement.

IEEE Transactions on Audio, Speech and Language Processing

Representation learning is the foundation of machine reading comprehension and inference. In state-of-the-art models, character-level representations have been broadly adopted to alleviate the problem of effectively representing rare or complex words. However, character itself is not a natural minimal linguistic unit for representation or word embedding composing due to ignoring the linguistic coherence of consecutive characters inside word.

IEEE Signal Processing Letters

Over the last years, several stationarity tests have been proposed. One of these methods uses time-frequency representations and stationarized replicas of the signal (known as surrogates) for testing wide-sense stationarity. In this letter, we propose a procedure to improve the original surrogate test.

IEEE Signal Processing Letters

In this letter, we propose a heuristic method to address sensor bias estimation to improve track-to-track association accuracy. A novel multi-parameter cost function is derived from rigid transformation function and it is minimized by the covariance matrix adaptation evolution strategies algorithm.

IEEE Signal Processing Letters

Diacritics restoration is a necessary component in order to develop Arabic text to speech systems. When diacritics are present, the phonetic transcription algorithm can be implemented based on a few rules. Restoring Arabic diacritics based on language model scoring is the dominant approach. A fixed vocabulary is usually used to build the language model used for scoring.

IEEE Transactions on Signal and Information Processing over Networks

We study the problem of distributed filtering for state space models over networks, which aims to collaboratively estimate the states by a network of nodes. Most of existing works on this problem assume that both process and measurement noises are Gaussian and their covariances are known in advance. In some cases, this assumption breaks down and no longer holds.

IEEE Transactions on Signal and Information Processing over Networks

Expander recovery is an iterative algorithm designed to recover sparse signals measured with binary matrices with linear complexity. In the paper, we study the expander recovery performance of the bipartite graph with girth greater than 4, which can be associated with a binary matrix with column correlations equal to either 0 or 1. 

IEEE Transactions on Signal and Information Processing over Networks

A key challenge in designing distributed particle filters is to minimize the communication overhead without compromising tracking performance. In this paper, we present two distributed particle filters that achieve robust performance with low communication overhead.

November 12-14, 2019
Early Registration Deadline: TBA
Location: Bangalore, India
Website

IEEE Transactions on Signal Processing

This paper studies resilient distributed estimation under measurement attacks. A set of agents each makes successive local, linear, noisy measurements of an unknown vector field collected in a vector parameter. The local measurement models are heterogeneous across agents and may be locally unobservable for the unknown parameter.

May 26-28, 2020
Location: Changed to--Virtual Conference

Tags: 

September 15-16, 2020
NOTE: Location changed to--Virtual Conference

December 11-12, 2019
Location: Brussels, Belgium

 

Tags: 

NOMADPLAY

Audience:  Fresh PhD who want to apply their ML skill to develop innovative applications in audio and music, with direct implementation within a commercialized product, and an ambitious technological roadmap for the years to come.

Job description: full time job within a team of 4 engineer / researchers / developers, completely integrated with the 12 members of the company.

Biamp Systems

Summary:

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel