Thomas A. Baran (Massachusetts Institute of Technology), “Conservation in signal processing systems” (2012)

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

10 years of news and resources for members of the IEEE Signal Processing Society

Thomas A. Baran (Massachusetts Institute of Technology), “Conservation in signal processing systems” (2012)

Thomas A. Baran (Massachusetts Institute of Technology), “Conservation in signal processing systems” (2012), Advisor: Prof. Alan V. Oppenheim

Conservation principles have played a key role in the development and analysis of many existing engineering systems and algorithms. In electrical network theory for example, many of the useful theorems regarding the stability, robustness, and variational properties of circuits can be derived in terms of Tellegen's theorem, which states that a wide range of quantities, including power, are conserved. Conservation principles also lay the groundwork for a number of results related to control theory, algorithms for optimization, and efficient filter implementations, suggesting potential opportunity in developing a cohesive signal processing framework within which to view these principles. This thesis makes progress toward that goal, providing a unified treatment of a class of conservation principles that occur in signal processing systems. The main contributions in the thesis can be broadly categorized as pertaining to a mathematical formulation of a class of conservation principles, the synthesis and identification of these principles in signal processing systems, a variational interpretation of these principles, and the use of these principles in designing and gaining insight into various algorithms. In illustrating the use of the framework, examples related to linear and nonlinear signal-flow graph analysis, robust filter architectures, and algorithms for distributed control are provided.

For details, please view the full thesis here.

SPS on Twitter

  • DEADLINE EXTENDED: The 7th Annual IEEE World Forum on Internet of Things is now accepting papers across a range of…
  • ONE WEEK OUT: The Brain Space Initiative Talk Series continues on Friday, 29 January when Juan (Helen) Zhou present…
  • DEADLINE EXTENDED: There's still time to submit your proposal to host the 2023 IEEE International Symposium on Biom…
  • The 35th Picture Coding Symposium is heading to Bristol, UK and is now accepting papers for their June event! Head…
  • Deadline to submit to has been extended to 25 January!

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar